228 research outputs found

    Electric monopole transitions from low energy excitations in nuclei

    Get PDF
    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2\rho^2(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between ρ2\rho^2(E0) and isotopic shifts

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    UNISOR on-line nuclear orientation facility (UNISOR/NOF)

    Get PDF
    The UNISOR on-line nuclear orientation facility (UNISOR/NOF) consists of a3He-4He dilution refrigerator on line to the isotope separator. Nuclei are implanted directly into a target foil which is soldered to the bottom accessed cold finger of the refrigerator. A 1.5 T superconducting magnet polarizes the ferromagnetic target foils and determines the axis of symmetry. Up to eight gamma detectors can be positioned around the refrigerator, each 9 cm from the target. A unique feature of this system is that the k=4 term in the directional distribution function can be directly and unambigously deduced so that a single solution for the mixing ratio can be found. The first on-line experiment at this facility reported here was a study of the decay of the191Hg and193Hg isotopes. © 1998 J.C. Baltzer A.G., Scientific Publishing Company

    Half-life of the superallowed β+ emitter Ne18

    Get PDF
    The half-life of Ne18 has been determined by detecting 1042-keV γ rays in the daughter F18 following the superallowed-Fermi β+ decay of samples implanted at the center of the 8πγ-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive Ne18 beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi β decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of Ne18, 1.6656 ± 0.0019 s, deduced following a 1.4σ correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope Ne23 was determined to be 37.11 ± 0.06 s, a factor of 2 improvement over the previous precision. © 2007 The American Physical Society

    β decay of Na32

    Get PDF
    The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32. © 2007 The American Physical Society

    High precision branching ratio measurement for the superallowed β decay of [Formula Presented] A prerequisite for exacting tests of the standard model

    Get PDF
    Nonanalog Fermi and Gamow-Teller branches in the superallowed β decay of [Formula Presented] have been investigated using γ-ray and conversion-electron spectroscopy. Nine observed transitions, in conjunction with a recent shell model calculation, determine the branching ratio of the analog transition to be 99.5(1)%. The experimental upper limits for the Fermi decay to the [Formula Presented] and [Formula Presented] levels are in agreement with recent theoretical predictions. The [Formula Presented] value for the [Formula Presented] β decay is predicted to be 10405(9) keV. © 2003 The American Physical Society
    corecore